22 research outputs found

    A new SiC/HfB2 based micro hotplate for metal oxide gassensors

    Get PDF
    Abstract Solzbacher, Florian A new SiC/HfB2 based modular concept of micro hotplates for metal oxide gassensors Im Rahmen dieser Arbeit wurde ein neuer SiC/HfB2-basierter Mikroheizer mit niedrigster Leistungsaufnahme für die Anwendung in Metalloxid-Gassensoren entwickelt und demonstriert. Erstmals wurden Siliziumkarbid (SiC) und Hafniumdiborid (HfB2) als Werkstoffe für einen Mikroheizer eingesetzt. Durch geringe Modifikation der Herstellungsprozesse lässt sich der Heizer so variieren, dass der Einsatz sowohl für den automobilen Anwendungsbereich (12V- 24V) als auch für tragbare Geräte (1V-2V) für eine Vielzahl unterschiedlicher Messgase möglich ist. Es ist der erste Mikroheizer für Gassensoren überhaupt, der den Batteriebetrieb bei nur 1-2 V erlaubt. Der modulare Fertigungsansatz ermöglicht die Reduzierung der Entwicklungs- und Fertigungskosten für die unterschiedlichen Anwendungsbereiche. Aus der Marktentwicklung in der Sensorik, den industriellen Anforderungen und den zu den Metalloxid-Gassensoren im Wettbewerb stehenden alternativen Technologien ergeben sich das Anforderungsprofil des Sensors. Die Wahl der Materialien spielt eine Schlüsselrolle für die Heizereigenschaften. Der Mikroheizer besteht aus einer 1 (m dicken, an 150 (m langen und 10 bis 40 (m breiten Stegen aufgehängten Membran mit Außenmaßen von 100 (m x 100 (m. Alternativ kommen eine HfB2 - Dünnfilm-Widerstandsheizung oder ein dotierter SiC-Heizer zum Einsatz. Mit Leistungsaufnahmen von 32 mW werden Temperaturen von 600°C erreicht, was einer Effizienz von ca. 19 K/mW entspricht. Die verwendeten hexagonalen Strukturen ermöglichen dichtes Packen der Sensoren in Arrays bei hoher mechanischer Stabilität. Erste NO2 Sensoren mit gassensitiver In2O3 Schicht konnten gezeigt werden.A new SiC/HfB2-based micro hotplate with ultra low power consumption for the application in metal oxide micro gas sensors is developed and demonstrated. For the first time, silicon carbide (SiC) and Hafniumdiboride (HfB2) are used as materials for a micro hotplate structure. Using only slight modifications of the fabrication process, the device can be used either for automotive applications with operating voltages of 12V-24V or for battery operated handheld detectors with operating voltages of 1V-2V for a variety of different gases. It is the first micro hotplate device ever designed to work for low battery voltages of 1V-2V. The modular approach towards the processing allows easy modification for a variety of application fields and thus also reduces market entrance barriers. Based on the market development of micro sensors, the industrial requirements, and competing metal oxide gas sensors using alternative technologies, technical specifications for the hotplate as well as the state of the art's limits are determined. The new material choice plays a key role in the device properties. The micro hotplate consists of a 100 ?m x 100 ?m membrane supported by thin beams of 1 ?m thickness, 150 ?m length and 10 to 40 ?m width. Alternatively, an HfB2 ? thin film resistive heater or a doped SiC heater are used. Temperatures of 600°C are achieved using a power consumption of only 32 mW resulting in a thermal heater efficiency of ~19 K/mW. The hexagonal geometry allows close packing of the hotplates in array structures with high mechanical strength. NO2 sensors with gas sensitive In2O3 layer are presented

    Localized actuation of temperature responsive hydrogel-layers with a PCB-based micro-heater array

    Get PDF
    Space-resolved stimulation of active hydrogel layers can be achieved for example by using a micro-heater array. In the current work, we present the interaction of (i) such a rigid array of heating elements that can be selectively activated and (ii) an active thermo-responsive hydrogel layer that responds to the local stimulus change. Due to the respective local actuation, (iii) the surface form of a passive top-layer can be manipulated. We present continuum-based simulative predictions based on the Temperature Expansion Model and compare them to experimental outcomes for the system

    A Sensor Platform for Smart Hydrogels in Biomedical Applications

    No full text
    Smart hydrogels are inherently biocompatible hydrophilic three-dimensional polymer networks able to undergo a volume-phase transition in the presence of an analyte. By molecular imprinting and/or aptamer-based approaches they can be tailored for a wide range of analytes with high selectivity. In combination with the biocompatibility, this makes hydrogels very promising candidates for biomedical sensor applications. However, to date hydrogels are rarely used for that purpose as the reliable detection of their swelling state remains a challenge. Here we report on a newly developed biocompatible bending sensor platform which can be equipped with almost any smart hydrogel, thereby paving the way for biomedical applications

    Low-Cost Microfluidic Sensors with Smart Hydrogel Patterned Arrays Using Electronic Resistive Channel Sensing for Readout

    No full text
    There is a strong commercial need for inexpensive point-of-use sensors for monitoring disease biomarkers or environmental contaminants in drinking water. Point-of-use sensors that employ smart polymer hydrogels as recognition elements can be tailored to detect almost any target analyte, but often suffer from long response times. Hence, we describe here a fabrication process that can be used to manufacture low-cost point-of-use hydrogel-based microfluidics sensors with short response times. In this process, mask-templated UV photopolymerization is used to produce arrays of smart hydrogel pillars inside sub-millimeter channels located upon microfluidics devices. When these pillars contact aqueous solutions containing a target analyte, they swell or shrink, thereby changing the resistance of the microfluidic channel to ionic current flow when a small bias voltage is applied to the system. Hence resistance measurements can be used to transduce hydrogel swelling changes into electrical signals. The only instrumentation required is a simple portable potentiostat that can be operated using a smartphone or a laptop, thus making the system suitable for point of use. Rapid hydrogel response rate is achieved by fabricating arrays of smart hydrogels that have large surface area-to-volume ratios

    HermesC: Low-Power Wireless Neural Recording System for Freely Moving Primates

    No full text
    Abstract—Neural prosthetic systems have the potential to restore lost functionality to amputees or patients suffering from neurological injury or disease. Current systems have primarily been designed for immobile patients, such as tetraplegics functioning in a rather static, carefully tailored environment. However, an active patient such as amputee in a normal dynamic, everyday environment may be quite different in terms of the neural control of movement. In order to study motor control in a more unconstrained natural setting, we seek to develop an animal model of freely moving humans. Therefore, we have developed and tested HermesC-INI3, a system for recording and wirelessly transmitting neural data from electrode arrays implanted in rhesus macaques who are freely moving. This system is based on the integrated neural interface (INI3) microchip which amplifies, digitizes, and transmits neural data across
    corecore